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cyclomatic index two 
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Department of Mathematics, University of Newcastle, Newcastle, NSW, Australia 

Received 10 October 1977 

Abstract. This paper is concerned with the numbers of figure eights, dumbells and theta 
graphs, weakly embeddable in a two-dimensional lattice. We show rigorously that, for the 
square lattice, the dominant limiting behaviour of the numbers of dumbells and theta 
graphs is the same as the limiting behaviour of the number of self-avoiding walks and that 
the total number of figure eights is less than or equal to the number of rooted polygons. 
We present numerical data to suggest that this bound may be best possible. Estimates of 
critical exponents for dumbells and theta graphs are also obtained. 

1. Introduction 

Exact enumeration work on the number of self-avoiding walks has been influenced in 
an important way by a counting theorem, due to Sykes (1961), which relates the 
numbers of self-avoiding walks, polygons, figure eights, dumbells and theta graphs. 
Hammersley’s work (Hammersley and Morton 1954, Hammersley 1961) on the 
limiting behaviour of polygons and self-avoiding walks, has been extended to include 
tadpoles (Whittington et a1 1975) and figure eights (Whittington et a1 1977). 
However, no rigorous results have appeared on the numbers of theta graphs or 
dumbells. Apart from their importance in Sykes’ counting theorem, the numbers of 
these graphs are of interest both in that they contribute to expansions of the Ising 
model and in view of their influence on the general question of the effects of various 
kinds of constraints on the behaviour of self-avoiding walks. 

In this paper we present results on all the closed connected graphs of cyclomatic 
index two, i.e. figure eights, dumbells and theta graphs. In 0 2 we show (rigorously) 
that there exist limits for dumbells and theta graphs, equal to the connective constant 
for self-avoiding walks, while in 0 3 we obtain an upper bound on the total number of 
figure eights, weakly embeddable in the square lattice. Section 4 is concerned with 
some restrictions on the generating functions of these graphs which arise from their 
interrelation through Sykes’ counting theorem. In 0 5 we analyse some exact enu- 
meration data to estimate critical exponents for these graphs, while 0 6 comprises a 
discussion and conclusion. 

t Present address: Department of Physics, King’s College, University of London, Strand, London WCZR 
Z L S ,  UK. 
$ Permanent address: Department of Chemistry, University of Toronto, Toronto, Canada, M5S 1Al.  
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2. Limiting behaviour of the numbers of dumbells and theta graphs on the square 
lattice 

In this section we discuss the existence of limits for the numbers of dumbells and theta 
graphs on the square lattice which establish that the dominant term in their asymptotic 
behaviour is the same as for self-avoiding walks. 

We first define some notation concerning the numbers of undirected, unrooted 
graphs. Let the numbers of simple chains (undirected self-avoiding walks) and poly- 
gons, having n edges, weakly embeddable in the square lattice, per site of the lattice, 
be (n)c  and (nk.  Hammersley (1961) has established that 

where p is the 'effective coordination number' of the lattice, that is, the exponential of 
the connective constant, Let the corresponding number of theta graphs having I ,  m 
and n edges in the three chains joining the two vertices of degree three be (1, m, n)e 
and let the number of dumbells with 1 edges in the simple chain joining the vertices of 
degree three and m and n edges in the two circuits, be (n, I ,  m)0-0. In addition, 
define the numbers of theta graphs and dumbells with a total of n edges as (n)t and 
(n)d respectively. 

The top (bottom) vertex of a graph will be defined to be the rightmost (leftmost) 
vertex in the top (bottom) row of vertices, while the top (bottom) edge joins the top 
(bottom) vertex to the vertex on its immediate left (right). Consider each polygon with 
n - 3 edges. To the top edge add three edges to form a (n -4 ,  1, 3) theta graph (see 
figure 1). Each polygon gives rise to a unique theta graph so that 

(n-4, 1 ,3)es(n-3)0 (2.2) 
and since 

it follows that 

To obtain an upper bound, for each (n, 1, m )  theta graph, delete an edge from each of 
two of the chains to form a simple chain with two less edges (see figure 2). Since each 

Polygon 8 graph 

Figure 1. Transformation of a (n-3tedge polygon to a (n-4,1,3)  theta graph, as 
described above (2.2). 

t A slightly stronger version of this result has been proved by D S K Ng and J B Wilker (1977, private 
communication). 
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m-m e gmph Chain 

Figure 2. Transformation of an (n, 1, m )  theta graph to a (n + 1 + m -2)edge chain, as 
described above (2.5). 

theta graph gives a distinct simple chain we have 

(n , I ,m)es(n+l+m-2) , .  

From (2.1), (2.4) and (2.5) we have 

lim n-l In (n)t = In p. 
n - w  

To establish the existence of the corresponding limit for dumbells we first consider 
the subset of n-edge simple chains with top and bottom vertices of degree one. Let 
there be (n)=’ of these. Clearly 

(n IC, s (n 1,. (2.7) 

Each polygon can be considered as a pair of c‘-chains which are mutually avoiding 
except that they meet at their top and bottom vertices. Hence 

( n ) o s C  (n -m)&),,. 
P?l 

If two c’-chains are joined so that the bottom vertex of one coincides with the top 
vertex of the other, the result is a new c’-chain so that 

(n -m), , (mbs(nk, .  (2.9) 

From (2.7), (2.8) and (2.9) we have 

sup n-l In(n),,= lim n-l ln(n),, = In p. (2.10) 
n + w  n >O 

Now consider joining the top vertex of an m-gon to the bottom vertex of an 1-edge 
c’-chain and the top vertex of the c’-chain to the bottom vertex of an n-gon. The result 
is a dumbell and each triple of two polygons and a c’-chain gives a distinct dumbell so 
that 

(n )o(lMm )o s (n, 1, m h-0. (2.11) 

To obtain an upper bound delete an edge from each circuit, adjacent to a vertex of 
degree three to give a simple chain, yielding 

(n, I,  m)o-os(n+l+m-2b.  

From (2.1), (2.11) and (2.12) we have 

(2.12) 

(2.13) 
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and, since 

then 

(2.14) 

(2.15) 

These arguments can be extended to other lattices with no great difficulty. 

3. An upper bound on the total number of figure eights on the square lattice 

In this section we shall show that the numbers of n-edge figure eights, weakly 
embeddable in the square lattice, (n)E is bounded above by the number of rooted 
polygons. Each figure eight has an articulation point, 0, joined to four other adjacent 
vertices which we label (clockwise) N, E, S and W, in an obvious notation. We shall 
say that the figure eight belongs to class A if vertices N and E are connected by a path 
not passing through 0, and to class B otherwise. It is clear that class B figure eights 
have a path joining vertices N and W without passing through 0. We explicitly 
consider only class A figure eights but an exactly analogous argument can be con- 
structed for those in class B. 

Consider a particular class A figure eight, e, say which is rooted at 0. We define an 
operation TA on the edges ON and OW. The edges ON and OW are removed and 
replaced by edges O’N and O’W as shown in figure 3. If 0’ is a new vertex, not already 
present in e, then the graph TAe is a rooted n-edge polygon. Alternatively 0’ may 
already be a vertex of e. In this case TAe may contain a double edge, i.e. two vertices 
joined by two different edges. If these Avo edges are deleted the resulting graph is a 
rooted (n -2)-edge polygon. The only other possibility is that 0‘ already exists in e 
but TAe contains no double edge; then TAe is a class A figure eight, with articulation 
point 0’ and root 0. 

I 

\ \ Is 
\ I ‘. - #’ 

F i v e  3. Transformation of a class A figure eight by moving vertices ON and OW as 
shown. 

For each class A figure eight we successively apply the transformation TA until a 
rooted n-gon or (n - 2)-gon is produced. It is clear that, if figure eights are produced, 
the further application of TA will eventually produce a polygon since, at each trans- 
formation, the root remains invariant and the articulation point moves through a 
lattice diagonal in a north-westerly direction and would otherwise eventually leave the 
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original figure eight. Moreover, the (rooted) polygon eventually produced from each 
original figure eight is unique since the final vertex 0', when the polygon is produced, 
is on a line at 45" to WO (i.e. running in a north-westerly direction from 0). Since 
each figure eight is eventually converted either into an n-gon or an (n -2)-gon we 
have 

(n), c n(n)o+ (n - 2)(n - 2)os 2n(n)o (3.1) 

which is a significant improvement on the previous best upper bound (Whittington er 
a1 1977). 

4. Restrictions on the critical exponents 

In this section we derive certain restrictions on the generating functions of chains, 
polygons, dumbells, theta graphs and figure eights. These follow, in the main, from 
the counting theorem introduced by Sykes (1961), which may be stated as follows: 

(n + 1)c - 2(q - l)(n I C  + (4 - 1I2(n - 1)c 

= n ( n ) o - ( n + l ) ( n + l ) o + 4 ( n + l ) d + 4 ( n + 1 ) e + 6 ( n + l ) ~  (4.1) 
where q is the coordination number of the underlying lattice. Multiplying (4.1) by x",  
where x is a dummy variable, and summing Z2+l=o, we obtain 

[l - ( q -  ~ ) x ] ~ C ( X ) = X ( X -  1 ) P f ( x ) + 4 D ( ~ ) + 6 6 ( x ) + 4 E ( x )  (4.2) 

c (n)cXn = C ( X ) ,  

where 
m 

n = O  
((-1)c = (-2)c = 0); 

OD 

W m m 

n = O  
c (n)&" = O(X).  

n=O 
c ( n ) d  = a x ) ;  (n)dXn = D ( x ) ;  

n = O  

From previous results, both those proved here and elsewhere, it is known that the 
generating functions defined in (4.3) are all non-analytic at the same point x = 1 / p ,  
where p is the 'effective coordination number'. If asymptotically 

C ( x ) - A ( l  - p x ) - "  

P ( x )  - B(1- px) l - "  

D ( x ) -  C(1 - p x ) - @  

e ( x ) - D ( i - p X ) - '  

it immediately follows from (4.2) and (4.3) that 

E(x)-E(l -px)- '  

(4.4) 

Y m a x h  P, 8, €1 (4.5) 
provided that p # 1 and p # q - 1 .  These last conditions are satisfied for all non-trivial 
lattices. That is, at least one of the generating functions P ( x ) ,  D(x),  6 ( x )  and E(x)  
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must diverge with the same exponent as the chain generating function C(x). The 
inequality arises from the possibility of cancellation occurring between two terms on 
the right-hand side of equation (4.2). 

For any regular lattice we have studied, the coefficients of all non-zero generating 
functions are monotone increasing functions of n, for sufficiently large n. Therefore 
the amplitudes of these generating functions are all positive, which precludes any 
cancellation. Thus for all non-pathological lattices, it is immediately clear that the 
inequality in (4.5) may be replaced by an equality. 

Further, for any lattice with coordination number 3, we can say that at least one of 
the generating functions P(x) ,  D(x)  and O ( x )  must diverge with the same exponent as 
C(x), since E(x) = 0 for these lattices. 

5. Numerical results 

The polygon generating function has been extensively studied by several authors, and 
it is generally accepted that (Y 2: -0.5 in two dimensions. Similarly, the chain generat- 
ing function has also been extensively investigated (Sykes et a1 1972, Watts 1975) and 
the generally accepted result is y - 4  for all two-dimensional lattices. 

For other generating functions there are no corresponding results in the literature, 
and we have studied these here. For the dumbell generating function we have terms 
to order xl’ on the triangular lattice. The available coefficients have been studied by 
the usual techniques of series analysis (Gaunt and Guttmann 1974) and yield consis- 
tent results. Assuming that, close to the singularity, the generating function can be 
represented as z?=,, ( n ) d X n  - C(I -px)-@ it follows that 

So that r,, = (r,,/p - l)n should approach p - 1 as n + CO. The rate of convergence of 
the sequence {t,,} is typically hastened by forming linear and quadratic extrapolants of 
the sequence {t,,)-corresponding to the sequences (6,) and { E , , } ,  where S,, = 
nr,, - (n - l)t,,-l and E,, = n26i - (n - 1)26,-~/(2n - 1). In table 1 we show the 
sequences for the triangular lattice dumbell generating functions. From this table we 
conclude that p - l < 0 . 3 6  and that p-1==0.30*0.05, so that p = 1.30*0.05. 

Table 1. Ratio method analysis of D(x) for the triangular lattice (p  = 4.1517). 

2 
3 
4 
5 
6 
7 
8 
9 

10 

5.7545 
5.1137 
4.8276 
4.6605 
4.5565 
4.4849 
4.4332 
4.3945 
4.3643 

0.7721 
0.6952 
0.6512 
0.6127 
0.5850 
0.5619 
0.5425 
0.5262 
0.5122 

2.514 
0.541 - 
0,519 
0,459 
0.447 
0.423 
0.407 
0.397 
0.385 

-1.037 
0.491 
0.351 
0.420 
0.356 
0.355 
0.358 
0.338 
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Since y -4,  it appears plausible that B = y. Subsequent analysis supports this 
conclusion. For the (loose-packed) square lattice, the corresponding results are not as 
regular as those for the triangular lattice, but are entirely consistent with the above 
numerical estimate of p. 

From the rigorous inequalities on the number of figure eights derived in 0 3 and 
elsewhere (Whittington et a1 1972), (n - 4 ) o ~  ( n h c  2n(n)o, it follows from the 
definitions (4.4) that (Y 3 E B a - 1. From the numerical evidence cited earlier from a, 
these inequalities yield 

in two dimensions. Thus we see immediately that neither the polygon nor the figure 
eight generating functions have an exponent remotely near that of the chain generat- 
ing function. Similar analyses to those performed on the dumbell generating function 
have been applied to the figure eight generating function. We show just one set of 
results, the linear and quadratic extrapolents of the sequence {t,,}, defined immediately 
following (5. l), for the triangular lattice figure eight generating function. These 
results are shown in table 2,  from which we conclude that E = -0.45 f 0.05. Combin- 
ing this with (5 .2)  suggests E = -0.5 exactly. This result implies that our upper bound 
(n)e62n(n)o  is best possible. As observed for the dumbell generating function, the 
square lattice results are less regular than, but consistent with, the triangular lattice 
estimate. 

Table 2. Ratio method analysis of E(*)  for the triangular lattice (N = 4.1517). 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

3.1333 
3,2766 
3.3506 
3.4331 
3.5010 
3.5559 
3.6052 
3.6472 
3.6838 
3.7159 

-0,7359 
-0.8431 
-0.9647 
-1.0384 
-1.0971 
-1.1481 
- 1.1847 
-1.2151 
-1.2396 
-1.2592 

-1.098 
-1.165 
-1.451 
- 1.407 
-1.449 
-1.505 
-1.478 
-1.489 
-1.484 
-1,478 

-1.831 
-1.251 
-1,960 
-1.307 
-1.566 
-1,687 
-1,374 
-1.538 
-1.462 
- 1.446 

For theta graphs our results are less precise. The results of a standard ratio 
method analysis for the triangular lattice are shown in table 3. These are not 
converging as well as the corresponding results for the other classes of graphs con- 
sidered, but we can estimate (n)@ - n - ” g n  where v is between 1.2 and 1 . 5 .  Forming 
Pad6 approximants to 

gives slightly better converged results (not shown), suggesting v - 1.35. We therefore 
summarise these results as v =  1*35*0.15, from which it follows that 6 =  
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Table 3. Ratio method analysis of O ( x )  for the triangular lattice (fi  = 4.1517). 

~ ~~~ 

n r,, = (n  +5 )@/ (n  +4)@ t,, = n(r,,/fi - 1) 

3 3,9286 -0,1612 
4 3.6909 -0.4440 
5 3.7488 -0.4853 
6 3,7898 -0.5231 
7 3.7868 -0.6153 
8 3,8138 -0.65 10 
9 3.8278 -0.7022 

10 3.8427 -0.7442 
11 3.8568 -0.7813 
12 3.8703 -0.8134 

6, = nt, - ( n  - l)tn-, 

0.144 
-1,292 
-0.650 
-0,712 
-1.169 
-0.901 
-1,112 
-1,121 
-1.153 
-1.166 

-0.35*0.15. We have also studied the exponent S for the square lattice, for which 
we obtain results which are consistent with those obtained for the triangular lattice. 

In summary, we find that P’(x) ,  O(x) and E(x)  display cusp-like singularities as 
x + 1/p.  Only D(x)  displays a divergent singularity. It then follows from (4.5) that 
y = p. This is supported by our numerical estimates of p, which are close to the value 
J, which is a generally accepted mnemonic for y. 

As part of our numerical investigation of those graphs which contribute to the 
chain generating function, we are able to confirm numerically a widely held belief 
concerning the presence of a singularity on the negative real axis for the chain 
generating function on loose-packed lattices. This belief is that the chain generating 
function has a singularity at x = -1 /p  if it has a singularity at x = 1 /p .  This seems to 
have first appeared in print in Guttmann (1972). It is clear that the polygon and figure 
eight generating functions, being even functions of x ,  are singular at x = -1 /p  if they 
are singular at x = 1 / p .  Thus for the square lattice our earlier investigations suggest 

4 

P ( ~ ) - ( I + ~ ~ ) ~ ~ ,  E ( ~ )  - (1 + px )4 

as x + - l/p. This observation coupled with Sykes’ chain counting theorem (4.2) is 
not sufficient evidence to prove the existence of a singularity at x = -l/p, since it is 
possible that a singularity in the theta graph and/or dumbell generating function 
precisely cancels the singularities in the polygon and figure eight generating functions. 
Our numerical studies of the dumbell and theta graph generating functions by PadC 
approximants (we formed PadC approximants to (x -x,)d(ln f(x))/dx with x c  = -1 /p  
and f ( x ) = D ( x )  and O(x)) and also a study of the generating functions by standard 
ratio and Neville table methods, suggest that any non-analyticity at x = -1 /p in those 
generating functions is extremely weak. More precisely, the available evidence 
suggests that any singularity at x = -1 /p  is considerably weaker than the square root 
cusp singularity of both the figure eight generating functions and the derivative of the 
polygon generating function. 

Thus we conclude that, for the square lattice, the figure eight generating function 
and polygon generating function jointly dominate the chain generating function at 
x = -1 /p ,  from which it follows that C(x)  has a singularity at x = -1 /p corresponding 
to the singularity at x = 1/p.  This is, of course, the analogue of the antiferromagnetic 
singularity of the Ising model, which is known to be characteristic of loose-packed 
lattices. 
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6. Discussion 

The primary rigorous results obtained here are the existence and identification of the 
limits (2.6) and (2.15) for theta graphs and dumbells and the upper bound, (3.1), on 
the number of figure eights. The interesting question which is raised by the first two 
results is: for what class of graphs is the corresponding limit equal to the self-avoiding 
walk limit? That is, if we classify graphs by topologies, for which topologies is the 
connective constant invariant? Assuming plausible forms for the asymptotic depen- 
dence of the generating functions we have also obtained several exponent inequalities 
(e.g. (4.5)) and that concerning figure eights and polygons seems likely to be best 
possible. 

The numerical estimates of the exponents are the first which have been obtained 
for dumbells and theta graphs and while the theta graph estimates leave much to be 
desired in the way of accuracy, the estimates for figure eights and dumbells are very 
satisfactory. 
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